C	Question		Answer	Marks	Guidance
1	(a)		The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions	B1	Not : neutrons interact with uranium <u>atoms</u> / <u>molecules</u> / <u>particles</u>
	(b)		Fuel rod: Contain the <u>uranium</u> (nuclei) / fissile material	B1	Show annotation on Scoris Not 'contains fuel'
			Control rods: Absorb (some of the) neutrons	B1	
			<i>Controlled chain reaction</i> : The control rods are inserted into the reactor so as to allow (on average) one neutron from previous reaction to cause subsequent fission (AW)	B1	QWC mark
			Moderator : Slows down the (fast-moving) neutrons / lowers the KE of (fast moving) neutrons / makes the (fast moving) neutrons into thermal neutrons	B1	
			Slow moving neutrons have a greater chance of causing fission / of being absorbed (by U-235) / sustaining chain reaction	B1	Allow : Fast moving neutrons are captured (easily) by uranium-238 (nuclei leaving insufficient number of nuclei for fission / chain reaction) for the last B1 mark
	(c)	(i)	power = $3.0 \times 10^{9}/0.22$ power = 1.36×10^{10} (W) or 1.4×10^{10} (W)	B1	
		(ii)	energy = $1.36 \times 10^{10} \times 8.64 \times 10^{4}$ energy = 1.18×10^{15} (J) or 1.2×10^{15} (J)	B1	Possible ecf from (c)(i)
		(iii)	(number of reactions per day) = $\frac{1.18 \times 10^{15}}{3.2 \times 10^{-11}}$	C1	Possible ecf from (c)(ii)
			mass = $\frac{1.18 \times 10^{15}}{3.2 \times 10^{-11}} \times 3.9 \times 10^{-25}$		
			mass = 14.4 (kg) or 14 (kg)	A1	Note: Using 1.2×10^{15} (J) gives an answer of 14.6 (kg); allow 15 (kg)
	(d)		Nuclear waste is (radio)active for a long time (AW) Causes ionisation	B1 B1	Allow: 'Nuclear waste can have long half life'
			Total	12	

Question	Expected Answers	Marks	Additional guidance
2 (a)	 Any <u>four</u> from 1 to 5: 1. Most of the alpha particles went straight through (some deviated through small angles) 2. Hence most of the atom is empty space 3. Some / a very small number of alpha particles were scattered / repelled through large angles / angles more than 90° 4. This showed the existence of (a tiny) positive nucleus 5. The size of the nucleus is about 10⁻¹⁴ m 	B1×4	Must use ticks on Scoris to show where the marks are awarded Allow: 10 ⁻¹⁵ m
	Reference ward a mark for one conclusion correctly linked to an observation	B1	
(b)	Any five from: Gravitational (force) This force is attractive AND is long-ranged / obeys ' $1/r^2$ relationship'Strong (nuclear force/interaction) This force is attractive (at larger distances) or repulsive at short distances AND is short-ranged / ~ 10^{-14} mElectrostatic / electrical (force) / coulomb (force) This force is repulsive between protons / zero between neutrons / zero between protons and neutrons AND is long-ranged / obeys ' $1/r^2$ relationship'	M1 A1 M1 A1 M1 A1	Allow: gravity Note: Do not allow 'inverse square law'; allow 'inverse square law with distance' Allow: Electromagnetic (interaction/force)

Question		Expected Answers	Marks	Additional guidance
(C)	(i)	mass = $235 \times 1.7 \times 10^{-27}$ (= 3.995×10^{-25} kg) volume = $\frac{4}{3}\pi \times (8.8 \times 10^{-15})^3$ (= 2.855×10^{-42} m ³) density = mass/volume	C1 C1	Allow: 1.66 × 10 ⁻²⁷ kg for mass of nucleon
		density = 1.4×10^{17} (kg m ⁻³)	A1	Allow: 10^{17} (kg m ⁻³) for this estimation question Note: Omitting 235 gives 6.0×10^{14} (kg m ⁻³), allow 2 mark Allow: 1 mark if 92 or 143 is used to determine the mass of the nucleus; this gives a density value of 5.5×10^{16} (kg m ⁻³) and 8.5×10^{16} (kg m ⁻³) respectively
	(ii)	The nucleons / neutrons and protons are packed together with little or no empty space (AW)	B1	
		Total	14	

Question		Expected Answers	Marks	Additional guidance
3	(a)	A neutron is absorbed by a (massive / uranium) nucleus	B1	
		The nucleus splits into two (smaller/daughter) nuclei and (one or more) neutrons	B1	
	(b)	In a fission reaction there is a decreases in the mass	M1	
		(According to $\Delta E = \Delta mc^2$) mass is converted into energy	A1	
		Or		
		The (total) binding energy of the products / smaller nuclei is greater than the binding energy of the original nucleus	M1	Allow: The 'BE increases (in the reaction)'
		The difference in the binding energies is released as energy	A1	
	(c)	Moderator: water / graphite / carbon	B1	Note: If boron is mentioned, then do not award this B1 mark
		It slows down the (fast-moving) neutrons / reduces the (kinetic) energy of neutrons	B1	Allow: They become thermal neutrons
		Slow-moving neutrons have greater chance of causing fission (than fast-moving neutrons)	B1	
		Total	7	

Question		tion	Expected Answers	Marks	Additional Guidance	
4	а	(i)	$A = \lambda N_0 = 4.5 \times 10^{23} \times 0.693 / (12 \times 3600)$	C1	allow one mark if the 12 hours is not converted into seconds.	
					Answer is 2.6 x10 ²²	
			$-7.22 \times 10^{18} (c^{-1})$	Δ1	Answer 4.33 x 10^{20}	
			$= 7.22 \times 10^{\circ} (S^{\circ})$			
		(ii)	3 half lives $N = 5.6 \times 10^{22}$	A1		
		(iii)	$N = N_{c} e^{-\lambda t}$ = 4.5 x 10 ²³ x $e^{-(0.693 \times 50/12)}$ or	C1	use of 2 ⁿ	
		(,	use of 2^n	•	50/12 half lives	
			$= 2.5 \times 10^{22}$	A1		
	b		material with large λ / short half life have initial			
			high activity	(B1)		
			hence precautions needed <u>for initial period</u> of disposal	(P1)		
			OR	(61)		
			material with small λ / long half life activity will			
			last for a long period	(B1)		
			MAX 2	(P1)		
				B2		
			Total	[7]		

Question		tion	Expected Answers	Marks	Additional Guidance
5	а	(i)	e: 0 and -1 N: 15 and 7 + (antineutrino)	B1	
		(ii)	e: 0 and +1 Si: 30 and 14 + (neutrino)	B1	Allow 1 for +1
					Correct symbols required for the neutrinos: $\boldsymbol{\nu}$ and (
			correct 'neutrino' in each case	B1	Allow v_e and C_e
	b	(i)	uud \rightarrow udd	B1	Allow $u \rightarrow d$
		(ii)	$udd \rightarrow uud$	B1	Allow $d \rightarrow u$
	С		weak(nuclear force)	B1	
			Total	[6]	